模式:

RAP (Rapid Refresh)

更新:
24 times per day, from 00:00 - 23:00 UTC
格林尼治平时:
12:00 UTC = 20:00 北京时间
Resolution:
0.128° x 0.123°
参量:
900百帕风:
900百帕等压面上的风
描述:
这幅图显示每个模式格点(模式格距约为80公里)900百帕等压面上模式计算的平均风矢量。 根据平均海平面气压值(约为1010百帕)推算,900百帕等压面高度在900米左右。 这幅图对低空飞行的滑翔运动爱好者和热气球驾驶员十分有用。 (风计算器)

RAP:
RAP
The Rapid Refresh (RAP) is a NOAA/NCEP operational weather prediction system comprised primarily of a numerical forecast model and analysis/assimilation system to initialize that model. It is run with a horizontal resolution of 13 km and 50 vertical layers. ,
The RAP was developed to serve users needing frequently updated short-range weather forecasts, including those in the US aviation community and US severe weather forecasting community. The model is run for every hour of day and is integrated to 18 hours for each cycle. The RAP uses the ARW core of the WRF model and the Gridpoint Statistical Interpolation (GSI) analysis - the analysis is aided with the assimilation of cloud and hydrometeor data to provide more skill in short-range cloud and precipitation forecasts.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://zh.wikipedia.org/wiki/數值天氣預報(as of Feb. 9, 2010, 20:50 UTC).