Modelo:

HARMONIE 40(HARMONIE-AROME Cy40) from the Netherland Weather Service

Actualização:
4 times per day, from 06:00, 12:00, 18:00, and 00:00 UTC
Greenwich Mean Time:
12:00 UTC = 13:00 WEST
Resolution:
0.025° x 0.037°
parâmetro:
Sea Level Pressure in hPa
Descrição:
The surface chart (also known as surface synoptic chart) presents the distribution of the atmospheric pressure observed at any given station on the earth's surface reduced to sea level. You can read the positions of the controlling weather features (highs, lows, ridges or troughs) from the distribution of the isobars (lines of equal sea level pressure). The isobars define the pressure field. The pressure field is the dominating player in the weather system. Additionally, this map helps you to identify synoptic-scale waves and gives you a first estimate on meso-scale fronts.
Spaghetti plots:
are a method of viewing data from an ensemble forecast.
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.

Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682
HARMONIE:
HARMONIE-AROME The non-hydrostatic convection-permitting HARMONIE-AROME model is developed in a code cooperation of the HIRLAM Consortium with Météo-France and ALADIN, and builds upon model components that have largely initially been developed in these two communities. The forecast model and analysis of HARMONIE-AROME are originally based on the AROME-France model from Météo-France (Seity et al, 2011, Brousseau et al, 2011) , but differ from the AROME-France configuration in various respects. A detailed description of the HARMONIE-AROME forecast model setup and its similarities and differences with respect to AROME-France can be found in (Bengtsson et al. 2017). [From: HIRLAM (2017)]
NWP:
A previsão numérica do tempo usa o estado instantâneo da atmosfera como dados de entrada para modelos matemáticos da atmosfera, com vista à previsão do estado do tempo.
Apesar dos primeiros esforços para conseguir prever o tempo tivessem sido dados na década de 1920, foi apenas com o advento da era dos computadores que foi possível realizá-lo em tempo real. A manipulação de grandes conjuntos de dados e a realização de cálculos complexos para o conseguir com uma resolução suficientemente elevada para produzir resultados úteis requer o uso dos supercomputadores mais potentes do mundo. Um conjunto de modelos de previsão, quer à escala global quer à escala regional, são executados para criar previsões do tempo nacionais. O uso de previsões com modelos semelhantes ("model ensembles") ajuda a definir a incerteza da previsão e estender a previsão do tempo bastante mais no futuro, o que não seria possível conseguir de outro modo.

Contribuidores da Wikipédia, "Previsão numérica do tempo," Wikipédia, a enciclopédia livre, http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675 (accessed fevereiro 9, 2010).