Modelo:

GEFS: Global Ensemble weather forecast from the "American Weatherservice "

Actualização:
2 times per day, from 10:00 and 23:00 UTC
Greenwich Mean Time:
12:00 UTC = 12:00 WET
Resolution:
1.0° x 1.0°
parâmetro:
Lifted Index
Descrição:

The Lifted Index (LI) is defined as a rising parcel's temperature when it reaches the 500 millibars level (at about 5,500m or 18,000 feet asl), subtracted from the actual temperature of the environmental air at 500 mbar. If the Lifted Index is a large negative number, then the parcel will be much warmer than its surroundings, and will continue to rise. Thunderstorms are fueled by strong rising air, thus the Lifted Index is a good measurement of the atmosphere's potential to produce severe thunderstorms.

The Lifted Index (LI)
RANGE IN K
COLOR
AMOUNT OF INSTABILITY
THUNDERSTORM PROBABILITY
more than 11
BLUE
Extremely stable conditions
Thunderstorms unlikely
8 to 11
LIGHT BLUE
Very stable conditions
Thunderstorms unlikely
4 to 7
GREEN
Stable conditions
Thunderstorms unlikely
0 to 3
LIGHT GREEN
Mostly stable conditions
Thunderstorm unlikely
-3 to -1
YELLOW
Slightly unstable
Thunderstorms possible
-5 to -4
ORANGE
Unstable
Thunderstorms probable
-7 to -6
RED
Highly unstable
Severe thunderstorms possible
less than -7
VIOLET
Extremely unstable
Violent thunderstorms, tornadoes possible

Ensemble forecasting:
is a numerical prediction method that is used to attempt to generate a representative sample of the possible future states of a dynamical system. Ensemble forecasting is a form of Monte Carlo analysis: multiple numerical predictions are conducted using slightly different initial conditions that are all plausible given the past and current set of observations, or measurements. Sometimes the ensemble of forecasts may use different forecast models for different members, or different formulations of a forecast model. The multiple simulations are conducted to account for the two sources of uncertainty in weather forecast models: (1) the errors introduced by chaos or sensitive dependence on the initial conditions; and (2) errors introduced because of imperfections in the model, such as the finite grid spacings.
Considering the problem of numerical weather prediction, ensemble predictions are now commonly made at most of the major operational weather prediction facilities worldwide, including the National Centers for Environmental Prediction (US), the European Centre for Medium-Range Weather Forecasts (ECMWF), the United Kingdom Met Office, Meteo France, Environment Canada, the Japanese Meteorological Agency, the Bureau of Meteorology (Australia), the China Meteorological Administration, the Korea Meteorological Administration, and CPTEC (Brazil). Experimental ensemble forecasts are made at a number of universities, such as the University of Washington, and ensemble forecasts in the US are also generated by the US Navy and Air Force.
Ideally, the relative frequency of events from the ensemble could be used directly to estimate the probability of a given weather event. For example, if 30 of 50 members indicated greater than 1 cm rainfall during the next 24 h, the probability of exceeding 1 cm could be estimated to be 60 percent. The forecast would be considered reliable if, considering all the situations in the past when a 60 percent probability was forecast, on 60 percent of those occasions did the rainfall actually exceed 1 cm. This is known as reliability or calibration. In practice, the probabilities generated from operational weather ensemble forecasts are not highly reliable, though with a set of past forecasts (reforecasts or hindcasts) and observations, the probability estimates from the ensemble can be adjusted to ensure greater reliability. Another desirable property of ensemble forecasts is sharpness. Provided that the ensemble is reliable, the more an ensemble forecast deviates from the climatological event frequency and issues 0 percent or 100 percent forecasts of an event, the more useful the forecast will be. However, sharp forecasts that are unaccompanied by high reliability will generally not be useful. Forecasts at long leads will inevitably not be particularly sharp, for the inevitable (albeit usually small) errors in the initial condition will grow with increasing forecast lead until the expected difference between two model states is as large as the difference between two random states from the forecast model's climatology.
There are various ways of viewing the data such as spaghetti plots, ensemble means or Postage Stamps where a number of different results from the models run can be compared.

Wikipedia, Ensemble forecasting, http://en.wikipedia.org/wiki/Ensemble_forecasting (optional description here) (as of Feb. 9, 2010, 20:30 UTC).
NWP:
A previsão numérica do tempo usa o estado instantâneo da atmosfera como dados de entrada para modelos matemáticos da atmosfera, com vista à previsão do estado do tempo.
Apesar dos primeiros esforços para conseguir prever o tempo tivessem sido dados na década de 1920, foi apenas com o advento da era dos computadores que foi possível realizá-lo em tempo real. A manipulação de grandes conjuntos de dados e a realização de cálculos complexos para o conseguir com uma resolução suficientemente elevada para produzir resultados úteis requer o uso dos supercomputadores mais potentes do mundo. Um conjunto de modelos de previsão, quer à escala global quer à escala regional, são executados para criar previsões do tempo nacionais. O uso de previsões com modelos semelhantes ("model ensembles") ajuda a definir a incerteza da previsão e estender a previsão do tempo bastante mais no futuro, o que não seria possível conseguir de outro modo.

Contribuidores da Wikipédia, "Previsão numérica do tempo," Wikipédia, a enciclopédia livre, http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675 (accessed fevereiro 9, 2010).