<div class="eI0">
  <div class="eI1">Modell:</div>
  <div class="eI2"><h2><a href="http://de.wikipedia.org/wiki/ECMWF" target="_blank">ECMWF</a>: Global weather forecast model from the "European Centre for Medium-Range Weather Forecasts"</h2></div>
 </div>
 <div class="eI0">
  <div class="eI1">Aktualisierung:</div>
  <div class="eI2">4 times per day, from 00:00, 06:00, 12:00 and 18:00 UTC</div>
 </div>
 <div class="eI0">
  <div class="eI1">Copyright:</div>
  <div class="eI2">This service is based on data and products of the European Centre for Medium-Range Weather Forecasts (ECMWF)<br>Source: <a href="https://www.ecmwf.int">https://www.ecmwf.int</a><br></div>
 </div>
 <div class="eI0">
  <div class="eI1">Licence Statement:</div>
  <div class="eI2">This ECMWF data is published under a Creative Commons Attribution 4.0 International (CC BY 4.0).<br>Link: <a href="https://creativecommons.org/licenses/by/4.0/">https://creativecommons.org/licenses/by/4.0/</a>
<br><br>The maps produced by WeatherOnline are subject to the <a href="https://www.weatheronline.co.uk/about/Additional-Terms-of-Use.htm">Terms and Conditions</a>.</div>
 </div>
 <div class="eI0">
  <div class="eI1">Disclaimer:</div>
  <div class="eI2">ECMWF does not accept any liability whatsoever for any error or omission in the data, their availability, or for any loss or damage arising from their use.</div>
 </div>
 <div class="eI0">
  <div class="eI1">Greenwich Mean Time:</div>
  <div class="eI2">12:00 UTC = 14:00 MESZ</div>
 </div>
 <div class="eI0">
  <div class="eI1">Aufl&ouml;sung:</div>
  <div class="eI2">0.25&deg; x 0.25&deg;</div>
 </div>
 <div class="eI0">
  <div class="eI1">Parameter:</div>
  <div class="eI2">Wet bulb potential temperature (&#952;w) in C</div>
 </div>
 <div class="eI0">
  <div class="eI1">Beschreibung:</div>
  <div class="eI2">

The ThetaW map - updated every 6 hours - shows the modelled wet bulb potential temperature at the 850hPa level. 
The theta w (&#952;w) areas are encircled by isotherms - lines connecting locations with equal wet bulb potential temperature. 
When an air parcel, starting from a certain pressure level, is lifted dry adiabatically until
saturation and subsequently is brought to a level of 1000 hPa along a saturated adiabat it
reaches what is called the saturated potential wet-bulb temperature: &#952;w.
As long as an air parcel undergoes an adiabatisch process, be it either dry or saturated, and
in both descending and ascending motions &#952;w does not change. Even when precipitation is
evaporating adiabatically &#952;w does not change, therefore &#952;w is "conservative".<BR>
An air mass is defined as a quantity of air with a horizontal extent of several hundred or
thousand kilometres and a thickness of several kilometres, which is homogeneous in thermal
characteristics. Such an air mass may form when air has been over an extensive and
homogeneous part of the Earth's surface during a considerable amount of time. This is the
so-called source area. In due time, by means of radiative exchange processes and contact
with the Earth's surface, an equilibrium develops which is evident from the fact that &#952;w has
approximately the same value in the entire air mass both horizontally and vertically, Hence &#952;w
can be used to characterise an air mass, with both sensible and latent heat are accounted
for.<BR>
Depending on possible source areas several main air mass types can be distinguished: polar
air (P), midlatitude air (ML) and (sub)tropical air (T). Also, but these are less important arctic
air (A) and equatorial air (E). These five main types can be subdivided in continental air (c)
and maritime air (m).<BR>
<BR>
Table 1: Characteristic values for &#952;w at 850 hPa (in &deg;C) for various air masses.
<TABLE CELLSPACING=0 COLS=4 BORDER=1>
		<TR>
			<TD HEIGHT=18 ALIGN=LEFT><B>Summer</B></TD>
			<TD ALIGN=LEFT><BR></TD>
			<TD ALIGN=LEFT><B>Winter</B></TD>
			<TD ALIGN=LEFT><BR></TD>
		</TR>
		<TR>
			<TD HEIGHT=18 ALIGN=LEFT>cA &lt; 7 </TD>
			<TD ALIGN=LEFT>mA &lt; 9</TD>
			<TD ALIGN=LEFT>cA &lt; -5 </TD>
			<TD ALIGN=LEFT>mA &lt; -7</TD>
		</TR>
		<TR>
			<TD HEIGHT=18 ALIGN=LEFT>cP 7 - 12 </TD>
			<TD ALIGN=LEFT>mP 6 - 12</TD>
			<TD ALIGN=LEFT>CP -6 &ndash; 2</TD>
			<TD ALIGN=LEFT>mP -3 - 5</TD>
		</TR>
		<TR>
			<TD HEIGHT=18 ALIGN=LEFT>CML 11 &ndash; 16</TD>
			<TD ALIGN=LEFT>mML 11 - 16</TD>
			<TD ALIGN=LEFT>CML 1 &ndash; 8</TD>
			<TD ALIGN=LEFT>mML 3 - 9</TD>
		</TR>
		<TR>
			<TD HEIGHT=18 ALIGN=LEFT>cT 15 - 19 </TD>
			<TD ALIGN=LEFT>mT 14 - 19</TD>
			<TD ALIGN=LEFT>CT 8 &ndash; 14</TD>
			<TD ALIGN=LEFT>mT 8 - 16</TD>
		</TR>
		<TR>
			<TD HEIGHT=18 ALIGN=LEFT>cE &gt; 17 </TD>
			<TD ALIGN=LEFT>mE &gt; 18</TD>
			<TD ALIGN=LEFT>cE &gt; 14 </TD>
			<TD ALIGN=LEFT>mE &gt; 16</TD>
		</TR>
	</TBODY>
</TABLE>
<BR>
If the &#952;w distribution is considered on a pressure surface, preferably 850 hPa, then extensive
areas with a small or no gradient can be observed. These areas of homogeneous &#952;w values
may be associated with air masses. Often various homogeneous areas are separated from
one another by relatively narrow transformation zones displaying a strong gradient. Here
frontal zones intersect with the pressure surface. Generally speaking a surface front is
located where at 850 hPa the 'warm boundary' of the zone with the large &#952;w gradient is
present.(Source: <a href="http://www.maq.wur.nl/UK/" target="_blank">Wageningen University</a>)

    
  </div>
 </div>
 <div class="eI0">
  <div class="eI1">NWP:</div>
  <div class="eI2">Numerische Wettervorhersagen sind rechnergest&uuml;tzte Wettervorhersagen. Aus dem Zustand der Atmosph&auml;re zu einem gegebenen Anfangszeitpunkt wird durch numerische L&ouml;sung der relevanten Gleichungen der Zustand zu sp&auml;teren Zeiten berechnet. Diese Berechnungen umfassen teilweise mehr als 14 Tage und sind die Basis aller heutigen Wettervorhersagen.<br><br>
In einem solchen numerischen Vorhersagemodell wird das Rechengebiet mit Gitterzellen und/oder durch eine spektrale Darstellung diskretisiert, so dass die relevanten physikalischen Gr&ouml;&szlig;en, wie vor allem Temperatur, Luftdruck, Windrichtung und Windst&auml;rke, im dreidimensionalen Raum und als Funktion der Zeit dargestellt werden k&ouml;nnen. Die physikalischen Beziehungen, die den Zustand der Atmosph&auml;re und seine Ver&auml;nderung beschreiben, werden als System partieller Differentialgleichungen modelliert. Dieses dynamische System wird mit Verfahren der Numerik, welche als Computerprogramme meist in Fortran implementiert sind, n&auml;herungsweise gel&ouml;st. Aufgrund des gro&szlig;en Aufwands werden hierf&uuml;r h&auml;ufig Supercomputer eingesetzt.<br><br>
<br>Seite „Numerische Wettervorhersage“. In: Wikipedia, Die freie Enzyklop&auml;die. Bearbeitungsstand: 21. Oktober 2009, 21:11 UTC. URL: <a href="http://de.wikipedia.org/w/index.php?title=Numerische_Wettervorhersage&amp;oldid=65856709" target="_blank">http://de.wikipedia.org/w/index.php?title=Numerische_Wettervorhersage&oldid=65856709</a> (Abgerufen: 9. Februar 2010, 20:46 UTC) <br>
</div></div>
</div>