Model:

HARMONIE 40(HARMONIE-AROME Cy40) from the Netherland Weather Service

Updated:
4 times per day, from 06:00, 12:00, 18:00, and 00:00 UTC
Greenwich Mean Time:
12:00 UTC = 08:00 EDT
Resolution:
0.025° x 0.037°
Parameter:
Minimum Temperature at 2 metres above the ground
Description:
This map shows the lowest temperature between 18 to 0 and 0 to 6 UTC. Though the modeled 2m-temperature often is not in agreement with the actual observation, together with 1. the temperature at 850 hPa, 2. SYNOP reports 3. and a skillful synoptic meteorologist, excellent Tmin 2m forecasts are possible.
Cluster of Ensemble Members:
20 members of an ensemble run are divided into different clusters which means groups with similar members according to the hierarchical "Ward method" The average surface pressure of all members in each cluster are computed and shown as isobares. The number of members in each cluster determines the probability of the forecast (see percentage)
Dendrogram:
A dendrogram shows the multidimensional distances between objects in a tree-like structure. Objects that are closest in a multidimensional data space are connected by a horizontal line forming a cluster. The distance between a given pair of objects (or clusters) are indicated by the height of the horizontal line. [http://www.statistics4u.info/fundstat_germ/cc_dendrograms]. The greater the distance the bigger the differences.
HARMONIE:
HARMONIE-AROME The non-hydrostatic convection-permitting HARMONIE-AROME model is developed in a code cooperation of the HIRLAM Consortium with Météo-France and ALADIN, and builds upon model components that have largely initially been developed in these two communities. The forecast model and analysis of HARMONIE-AROME are originally based on the AROME-France model from Météo-France (Seity et al, 2011, Brousseau et al, 2011) , but differ from the AROME-France configuration in various respects. A detailed description of the HARMONIE-AROME forecast model setup and its similarities and differences with respect to AROME-France can be found in (Bengtsson et al. 2017). [From: HIRLAM (2017)]
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).