Model:

GDAS: "Global Data Assimilation System"

Güncelleme:
4 times per day, from 00:00, 06:00, 12:00 and 18:00 UTC
Greenwich Mean Time:
12:00 UTC = 15:00 EET
Resolution:
0.25° x 0.25°
Parametre:
Soaring Index
Tarife:
The Soaring Index map - updated every 6 hours - shows the modelled lift rate by thermals (convective clouds). The index is based on weather information between 5 000 feet (1 524 metres) and 20 000 feet (6 096 metres) and is expressed in Kelvin.
Table 1: Characteristic values for Soaring Index for soaring
Soaring Index Soaring Conditions
Below -10
 
-10 to 5
 
5 to 20
 
Above 20
Poor
 
Moderate
 
Good
 
Excellent*

Table 2: Critical values for the Soaring Index
Soaring Index Convective potential
15-20 Isolated showers, 20% risk for thunderstorms
20-25 Occasionally showers, 20-40% risk for thunderstorms
25-30 Frequent showers, 40-60% risk for thunderstorms.
30-35 60-80% risk for thunderstorms.
35 + >80% risk for thunderstorms
GDAS
The Global Data Assimilation System (GDAS) is the system used by the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) model to place observations into a gridded model space for the purpose of starting, or initializing, weather forecasts with observed data. GDAS adds the following types of observations to a gridded, 3-D, model space: surface observations, balloon data, wind profiler data, aircraft reports, buoy observations, radar observations, and satellite observations.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).