Modelo:

FMI (Hirlam Model from finnish meteorological institute)

Actualizado:
4 times per day, from 08:00, 14:00, 20:00, and 00:00 UTC
Tiempo medio de Greenwich:
12:00 UTC = 06:00 MGZ
Resolutión:
0.068025° x 0.068025°
Parámetro:
Soaring Index
Descripción:
The Soaring Index map - updated every 6 hours - shows the modelled lift rate by thermals (convective clouds). The index is based on weather information between 5 000 feet (1 524 metres) and 20 000 feet (6 096 metres) and is expressed in Kelvin.
Table 1: Characteristic values for Soaring Index for soaring
Soaring Index Soaring Conditions
Below -10
 
-10 to 5
 
5 to 20
 
Above 20
Poor
 
Moderate
 
Good
 
Excellent*

Table 2: Critical values for the Soaring Index
Soaring Index Convective potential
15-20 Isolated showers, 20% risk for thunderstorms
20-25 Occasionally showers, 20-40% risk for thunderstorms
25-30 Frequent showers, 40-60% risk for thunderstorms.
30-35 60-80% risk for thunderstorms.
35 + >80% risk for thunderstorms
FMI:
FMI
At the Finnish Meteorological Institute, results from several numerical weather prediction models are utilized. Most of all, these include products from the European Centre of Medium Range Forecasts (ECMWF), located in Reading in the United Kingdom. For shorter range forecasts, more detailed forecasts are produced in-house using a limited area models (LAMs) called HIRLAM and HARMONIE, which are being developed by FMI as an international co-operation programme with a number of European countries.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).