<div class="eI0"> <div class="eI1">Model:</div> <div class="eI2"><h2>FMI (Hirlam Model from finnish meteorological institute)</h2></div> </div> <div class="eI0"> <div class="eI1">Updated:</div> <div class="eI2">4 times per day, from 08:00, 14:00, 20:00, and 00:00 UTC</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 17:00 IST</div> </div> <div class="eI0"> <div class="eI1">Resolution:</div> <div class="eI2">0.068025° x 0.068025°</div> </div> <div class="eI0"> <div class="eI1">Parameter:</div> <div class="eI2">Sea Level Pressure in hPa </div> </div> <div class="eI0"> <div class="eI1">Description:</div> <div class="eI2"> The surface chart (also known as surface synoptic chart) presents the distribution of the atmospheric pressure observed at any given station on the earth's surface reduced to sea level. You can read the positions of the controlling weather features (highs, lows, ridges or troughs) from the distribution of the isobars (lines of equal sea level pressure). The isobars define the pressure field. The pressure field is the dominating player in the weather system. Additionally, this map helps you to identify synoptic-scale waves and gives you a first estimate on meso-scale fronts. </div> </div> <div class="eI0"> <div class="eI1">FMI:</div> <a href="http://ilmatieteenlaitos.fi" target="_blank">FMI</a> <br> <div class="eI2"> At the Finnish Meteorological Institute, results from several numerical weather prediction models are utilized. Most of all, these include products from the European Centre of Medium Range Forecasts (ECMWF), located in Reading in the United Kingdom. For shorter range forecasts, more detailed forecasts are produced in-house using a limited area models (LAMs) called HIRLAM and HARMONIE, which are being developed by FMI as an international co-operation programme with a number of European countries.<br> </div></div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.<br> <br>Wikipedia, Numerical weather prediction, <a href="http://en.wikipedia.org/wiki/Numerical_weather_prediction" target="_blank">http://en.wikipedia.org/wiki/Numerical_weather_prediction</a>(as of Feb. 9, 2010, 20:50 UTC).<br> </div></div> </div>